Telegram Group & Telegram Channel
Зачем нужно масштабирование признаков? Как бы вы его провели?

Допустим, у нас есть линейная регрессия с двумя независимыми переменными, у которых совершенно разный масштаб. Например, значения одного признака находятся в диапазоне от 0 до 100, а второго — от 0 до 1. Чтобы подстроиться под такие признаки, модель подберёт коэффициенты так, что первый будет небольшим, а второй — большим.

Проблема тут возникает на этапе обучения. Дело в том, что скорость оптимизации таких коэффициентов не будет одинаковой: ведь при градиентном спуске мы найдём две частные производные и подберём единый для обеих производных коэффициент скорости обучения. В результате, на каждой итерации мы будем получать различающиеся значения градиента для разных направлений.

Есть несколько способов масштабирования:
▫️Нормализация.
В данном случае все значения будут находиться в диапазоне от 0 до 1.
▫️Стандартизация.
Масштабирует значения с учётом стандартного отклонения.

Для нормализации, например, можно использовать метод MinMaxScaler из scikit-learn. Для стандартизации в этой же библиотеке есть метод StandardScaler.

#машинное_обучение



tg-me.com/ds_interview_lib/280
Create:
Last Update:

Зачем нужно масштабирование признаков? Как бы вы его провели?

Допустим, у нас есть линейная регрессия с двумя независимыми переменными, у которых совершенно разный масштаб. Например, значения одного признака находятся в диапазоне от 0 до 100, а второго — от 0 до 1. Чтобы подстроиться под такие признаки, модель подберёт коэффициенты так, что первый будет небольшим, а второй — большим.

Проблема тут возникает на этапе обучения. Дело в том, что скорость оптимизации таких коэффициентов не будет одинаковой: ведь при градиентном спуске мы найдём две частные производные и подберём единый для обеих производных коэффициент скорости обучения. В результате, на каждой итерации мы будем получать различающиеся значения градиента для разных направлений.

Есть несколько способов масштабирования:
▫️Нормализация.
В данном случае все значения будут находиться в диапазоне от 0 до 1.
▫️Стандартизация.
Масштабирует значения с учётом стандартного отклонения.

Для нормализации, например, можно использовать метод MinMaxScaler из scikit-learn. Для стандартизации в этой же библиотеке есть метод StandardScaler.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/280

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

Библиотека собеса по Data Science | вопросы с собеседований from ms


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA